skip to main content


Search for: All records

Creators/Authors contains: "El-Sherif, Hesham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The layered square-planar nickelates, Nd n +1 Ni n O 2 n +2 , are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd 6 Ni 5 O 12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n  = 3 Ruddlesden-Popper compound, Nd 4 Ni 3 O 10 , and subsequent reduction to the square-planar phase, Nd 4 Ni 3 O 8 . We synthesize our highest quality Nd 4 Ni 3 O 10 films under compressive strain on LaAlO 3 (001), while Nd 4 Ni 3 O 10 on NdGaO 3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd 4 Ni 3 O 10 on SrTiO 3 (001). Films reduced on LaAlO 3 become insulating and form compressive strain-induced c -axis canting defects, while Nd 4 Ni 3 O 8 films on NdGaO 3 are metallic. This work provides a pathway to the synthesis of Nd n +1 Ni n O 2 n +2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. null (Ed.)
  3. Abstract

    Reliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next‐generation electronic, logic‐memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe2films with Re atoms via metal–organic chemical vapor deposition is reported. Dopant concentrations are uniformly distributed over the substrate surface, with precisely controlled concentrations down to <0.001% Re achieved by tuning the precursor partial pressure. Moreover, the impact of doping on morphological, chemical, optical, and electronic properties of WSe2is elucidated with detailed experimental and theoretical examinations, confirming that the substitutional doping of Re at the W site leads to n‐type behavior of WSe2. Transport characteristics of fabricated back‐gated field‐effect‐transistors are directly correlated to the dopant concentration, with degrading device performances for doping concentrations exceeding 1% of Re. The study demonstrates a viable approach to introducing true dopant‐level impurities with high precision, which can be scaled up to batch production for applications beyond digital electronics.

     
    more » « less
  4. Abstract

    This work is a systematic experimental and theoretical study of the in‐plane dielectric functions of 2D gallium and indium films consisting of two or three atomic metal layers confined between silicon carbide and graphene with a corresponding bonding gradient from covalent to metallic to van der Waals type.k‐space resolved free electron and bound electron contributions to the optical response are identified, with the latter pointing towards the existence of thickness dependent quantum confinement phenomena. The resonance energies in the dielectric functions and the observed epsilon near‐zero behavior in the near infrared to visible spectral range, are dependent on the number of atomic metal layers and properties of the metal involved. A model‐based spectroscopic ellipsometry approach is used to estimate the number of atomic metal layers, providing a convenient route over expensive invasive characterization techniques. A strong thickness and metal choice dependence of the light–matter interaction makes these half van der Waals 2D polar metals attractive for quantum engineered metal films, tunable (quantum‐)plasmonics and nano‐photonics.

     
    more » « less